So lief es früher
Die Mitarbeitereinsatzplanung ist einer der entscheidenden Faktoren für die Qualität der Service-Hotline. Zu wenig besetzte Plätze sorgen für Wartezeiten und unzufriedene Kunden; zu viele für unnötige Kosten. Die unbekannte Grösse ist die Anzahl der Anrufe, die an einem Tag eingehen werden. Bisher überliessen Unternehmen das Schätzen dem Bauchgefühl der Verantwortlichen oder verliessen sich auf einfache Durchschnittswerte. Mit all der Unzuverlässigkeit und der schwankenden Qualität, die damit verbunden sind.
Dank kommt KI ins Spiel
Das Optimieren von Telefon-Serviceangeboten durch eine bessere Prognose der Zahl der Anrufer ist ein Auftrag, bei dem sich KI-Anwendungen wohlfühlen: grosse Datenmengen, eine klar umrissene Aufgabe – und ein einfaches Kriterium zur Erfolgsmessung: Die auf KI basierenden Schätzungen müssen besser sein als die zuvor gewählten Verfahren.
Die Datengrundlage bilden die Anruferzahlen der letzten Jahre. Auf dieser Basis sucht ein Machine-Learning-System Muster und findet Zusammenhänge zwischen der Anzahl der Anrufe und Faktoren wie Wochentag, Uhrzeit, Urlaubszeit, Feiertagen, Wetter oder Werbeaktivitäten. Die Prognose der Aktivitäten an der Service-Hotline wird laufend mit den realen Werten verglichen und die Parameter werden angepasst.
So ist es jetzt
Kunden erreichen Servicemitarbeiter schneller und klären ihre Anfragen zügiger. Dies sorgt für mehr Zufriedenheit und reduziert die Wechselwahrscheinlichkeit. Gleichzeitig bietet die Arbeitsorganisation mit Machine Learning eine verlässlichere Planungsgrundlage sowohl für die Mitarbeiter als auch für die Führungskräfte im Call-Center. Dies hilft beispielsweise bei der aufwandsorientierten Urlaubsplanung.